util-linux/sys-utils/lscpu-topology.c

662 lines
17 KiB
C

#include <errno.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include "lscpu.h"
/* add @set to the @ary, unnecessary set is deallocated. */
static int add_cpuset_to_array(cpu_set_t **ary, size_t *items, cpu_set_t *set, size_t setsize)
{
size_t i;
if (!ary)
return -EINVAL;
for (i = 0; i < *items; i++) {
if (CPU_EQUAL_S(setsize, set, ary[i]))
break;
}
if (i == *items) {
ary[*items] = set;
++*items;
return 0;
}
CPU_FREE(set);
return 1;
}
static void free_cpuset_array(cpu_set_t **ary, int items)
{
int i;
if (!ary)
return;
for (i = 0; i < items; i++)
free(ary[i]);
free(ary);
}
void lscpu_cputype_free_topology(struct lscpu_cputype *ct)
{
if (!ct)
return;
free_cpuset_array(ct->coremaps, ct->ncores);
free_cpuset_array(ct->socketmaps, ct->nsockets);
free_cpuset_array(ct->bookmaps, ct->nbooks);
free_cpuset_array(ct->drawermaps, ct->ndrawers);
}
void lscpu_free_caches(struct lscpu_cache *caches, size_t n)
{
size_t i;
if (!caches)
return;
for (i = 0; i < n; i++) {
struct lscpu_cache *c = &caches[i];
DBG(MISC, ul_debug(" freeing cache #%zu %s::%d",
i, c->name, c->id));
free(c->name);
free(c->type);
free(c->allocation_policy);
free(c->write_policy);
free(c->sharedmap);
}
free(caches);
}
static int cmp_cache(const void *a0, const void *b0)
{
const struct lscpu_cache
*a = (const struct lscpu_cache *) a0,
*b = (const struct lscpu_cache *) b0;
return strcmp(a->name, b->name);
}
void lscpu_sort_caches(struct lscpu_cache *caches, size_t n)
{
if (caches && n)
qsort(caches, n, sizeof(struct lscpu_cache), cmp_cache);
}
/* Read topology for specified type */
static int cputype_read_topology(struct lscpu_cxt *cxt, struct lscpu_cputype *ct)
{
size_t i, npos;
struct path_cxt *sys;
int nthreads = 0, sw_topo = 0;
FILE *fd;
sys = cxt->syscpu; /* /sys/devices/system/cpu/ */
npos = cxt->npossibles; /* possible CPUs */
DBG(TYPE, ul_debugobj(ct, "reading %s/%s/%s topology",
ct->vendor ?: "", ct->model ?: "", ct->modelname ?:""));
for (i = 0; i < cxt->npossibles; i++) {
struct lscpu_cpu *cpu = cxt->cpus[i];
cpu_set_t *thread_siblings = NULL, *core_siblings = NULL;
cpu_set_t *book_siblings = NULL, *drawer_siblings = NULL;
int num, n;
if (!cpu || cpu->type != ct)
continue;
num = cpu->logical_id;
if (ul_path_accessf(sys, F_OK,
"cpu%d/topology/thread_siblings", num) != 0)
continue;
/* read topology maps */
ul_path_readf_cpuset(sys, &thread_siblings, cxt->maxcpus,
"cpu%d/topology/thread_siblings", num);
ul_path_readf_cpuset(sys, &core_siblings, cxt->maxcpus,
"cpu%d/topology/core_siblings", num);
ul_path_readf_cpuset(sys, &book_siblings, cxt->maxcpus,
"cpu%d/topology/book_siblings", num);
ul_path_readf_cpuset(sys, &drawer_siblings, cxt->maxcpus,
"cpu%d/topology/drawer_siblings", num);
n = CPU_COUNT_S(cxt->setsize, thread_siblings);
if (!n)
n = 1;
if (n > nthreads)
nthreads = n;
/* Allocate arrays for topology maps.
*
* For each map we make sure that it can have up to ncpuspos
* entries. This is because we cannot reliably calculate the
* number of cores, sockets and books on all architectures.
* E.g. completely virtualized architectures like s390 may
* have multiple sockets of different sizes.
*/
if (!ct->coremaps)
ct->coremaps = xcalloc(npos, sizeof(cpu_set_t *));
if (!ct->socketmaps)
ct->socketmaps = xcalloc(npos, sizeof(cpu_set_t *));
if (!ct->bookmaps && book_siblings)
ct->bookmaps = xcalloc(npos, sizeof(cpu_set_t *));
if (!ct->drawermaps && drawer_siblings)
ct->drawermaps = xcalloc(npos, sizeof(cpu_set_t *));
/* add to topology maps */
add_cpuset_to_array(ct->coremaps, &ct->ncores, thread_siblings, cxt->setsize);
add_cpuset_to_array(ct->socketmaps, &ct->nsockets, core_siblings, cxt->setsize);
if (book_siblings)
add_cpuset_to_array(ct->bookmaps, &ct->nbooks, book_siblings, cxt->setsize);
if (drawer_siblings)
add_cpuset_to_array(ct->drawermaps, &ct->ndrawers, drawer_siblings, cxt->setsize);
}
/* s390 detects its cpu topology via /proc/sysinfo, if present.
* Using simply the cpu topology masks in sysfs will not give
* usable results since everything is virtualized. E.g.
* virtual core 0 may have only 1 cpu, but virtual core 2 may
* five cpus.
* If the cpu topology is not exported (e.g. 2nd level guest)
* fall back to old calculation scheme.
*/
if ((fd = ul_path_fopen(cxt->procfs, "r", "sysinfo"))) {
int t0, t1;
char buf[BUFSIZ];
DBG(TYPE, ul_debugobj(ct, " reading sysinfo"));
while (fgets(buf, sizeof(buf), fd) != NULL) {
if (sscanf(buf, "CPU Topology SW: %d %d %zu %zu %zu %zu",
&t0, &t1,
&ct->ndrawers_per_system,
&ct->nbooks_per_drawer,
&ct->nsockets_per_book,
&ct->ncores_per_socket) == 6) {
sw_topo = 1;
DBG(TYPE, ul_debugobj(ct, " using SW topology"));
break;
}
}
if (fd)
fclose(fd);
}
ct->nthreads_per_core = nthreads;
if (ct->mtid) {
uint64_t x;
if (ul_strtou64(ct->mtid, &x, 10) == 0 && x <= ULONG_MAX)
ct->nthreads_per_core = (size_t) x + 1;
}
if (!sw_topo) {
ct->ncores_per_socket = ct->nsockets ? ct->ncores / ct->nsockets : 0;
ct->nsockets_per_book = ct->nbooks ? ct->nsockets / ct->nbooks : 0;
ct->nbooks_per_drawer = ct->ndrawers ? ct->nbooks / ct->ndrawers : 0;
ct->ndrawers_per_system = ct->ndrawers;
}
DBG(TYPE, ul_debugobj(ct, " nthreads: %zu (per core)", ct->nthreads_per_core));
DBG(TYPE, ul_debugobj(ct, " ncores: %zu (%zu per socket)", ct->ncores, ct->ncores_per_socket));
DBG(TYPE, ul_debugobj(ct, " nsockets: %zu (%zu per books)", ct->nsockets, ct->nsockets_per_book));
DBG(TYPE, ul_debugobj(ct, " nbooks: %zu (%zu per drawer)", ct->nbooks, ct->nbooks_per_drawer));
DBG(TYPE, ul_debugobj(ct, " ndrawers: %zu (%zu per system)", ct->ndrawers, ct->ndrawers_per_system));
return 0;
}
/* count size of all instancess of the "name" */
size_t lscpu_get_cache_full_size(struct lscpu_cxt *cxt, const char *name, int *instances)
{
size_t i, sz = 0;
if (instances)
*instances = 0;
for (i = 0; i < cxt->ncaches; i++) {
if (strcmp(cxt->caches[i].name, name) == 0) {
sz += cxt->caches[i].size;
if (instances)
(*instances)++;
}
}
return sz;
}
struct lscpu_cache *lscpu_cpu_get_cache(struct lscpu_cxt *cxt,
struct lscpu_cpu *cpu, const char *name)
{
size_t i;
for (i = 0; i < cxt->ncaches; i++) {
struct lscpu_cache *ca = &cxt->caches[i];
if (strcmp(ca->name, name) == 0 &&
CPU_ISSET_S(cpu->logical_id, cxt->setsize, ca->sharedmap))
return ca;
}
return NULL;
}
/*
* The cache is identifued by type+level+id.
*/
static struct lscpu_cache *get_cache(struct lscpu_cxt *cxt,
const char *type, int level, int id)
{
size_t i;
for (i = 0; i < cxt->ncaches; i++) {
struct lscpu_cache *ca = &cxt->caches[i];
if (ca->id == id &&
ca->level == level &&
strcmp(ca->type, type) == 0)
return ca;
}
return NULL;
}
static struct lscpu_cache *add_cache(struct lscpu_cxt *cxt,
const char *type, int level, int id)
{
struct lscpu_cache *ca;
cxt->ncaches++;
cxt->caches = xrealloc(cxt->caches,
cxt->ncaches * sizeof(*cxt->caches));
ca = &cxt->caches[cxt->ncaches - 1];
memset(ca, 0 , sizeof(*ca));
ca->id = id;
ca->level = level;
ca->type = xstrdup(type);
DBG(GATHER, ul_debugobj(cxt, "add cache %s%d::%d", type, level, id));
return ca;
}
static int mk_cache_id(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu, char *type, int level)
{
size_t i;
int idx = 0;
for (i = 0; i < cxt->ncaches; i++) {
struct lscpu_cache *ca = &cxt->caches[i];
if (ca->level != level || strcmp(ca->type, type) != 0)
continue;
if (ca->sharedmap &&
CPU_ISSET_S(cpu->logical_id, cxt->setsize, ca->sharedmap))
return idx;
idx++;
}
return idx;
}
static int read_sparc_onecache(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu,
int level, char *typestr, int type)
{
struct lscpu_cache *ca;
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
uint32_t size;
int rc, id;
char buf[32];
if (type)
snprintf(buf, sizeof(buf), "l%d_%c", level, type);
else
snprintf(buf, sizeof(buf), "l%d_", level);
rc = ul_path_readf_u32(sys, &size,
"cpu%d/%scache_size", num, buf);
if (rc != 0)
return rc;
DBG(CPU, ul_debugobj(cpu, "#%d reading sparc %s cache", num, buf));
id = mk_cache_id(cxt, cpu, typestr, level);
ca = get_cache(cxt, typestr, level, id);
if (!ca)
ca = add_cache(cxt, typestr, level, id);
if (!ca->name) {
ul_path_readf_u32(sys, &ca->coherency_line_size,
"cpu%d/%scache_line_size", num, buf);
assert(ca->type);
if (type)
snprintf(buf, sizeof(buf), "L%d%c", ca->level, type);
else
snprintf(buf, sizeof(buf), "L%d", ca->level);
ca->name = xstrdup(buf);
ca->size = size;
}
/* There is no sharedmap of the cache in /sys, we assume that caches are
* not shared. Send a patch if your /sys provides another information.
*/
if (!ca->sharedmap) {
size_t setsize = 0;
ca->sharedmap = cpuset_alloc(cxt->maxcpus, &setsize, NULL);
CPU_ZERO_S(setsize, ca->sharedmap);
CPU_SET_S(num, setsize, ca->sharedmap);
}
return 0;
}
static int read_sparc_caches(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
read_sparc_onecache(cxt, cpu, 1, "Instruction", 'i');
read_sparc_onecache(cxt, cpu, 1, "Data", 'd');
read_sparc_onecache(cxt, cpu, 2, "Unified", 0);
read_sparc_onecache(cxt, cpu, 2, "Unified", 0);
return 0;
}
static int read_caches(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
char buf[256];
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
size_t i, ncaches = 0;
while (ul_path_accessf(sys, F_OK,
"cpu%d/cache/index%zu",
num, ncaches) == 0)
ncaches++;
if (ncaches == 0 && ul_path_accessf(sys, F_OK,
"cpu%d/l1_icache_size", num) == 0)
return read_sparc_caches(cxt, cpu);
DBG(CPU, ul_debugobj(cpu, "#%d reading %zd caches", num, ncaches));
for (i = 0; i < ncaches; i++) {
struct lscpu_cache *ca;
int id, level;
if (ul_path_readf_s32(sys, &id, "cpu%d/cache/index%zu/id", num, i) != 0)
id = -1;
if (ul_path_readf_s32(sys, &level, "cpu%d/cache/index%zu/level", num, i) != 0)
continue;
if (ul_path_readf_buffer(sys, buf, sizeof(buf),
"cpu%d/cache/index%zu/type", num, i) <= 0)
continue;
if (id == -1)
id = mk_cache_id(cxt, cpu, buf, level);
ca = get_cache(cxt, buf, level, id);
if (!ca)
ca = add_cache(cxt, buf, level, id);
if (!ca->name) {
int type = 0;
assert(ca->type);
if (!strcmp(ca->type, "Data"))
type = 'd';
else if (!strcmp(ca->type, "Instruction"))
type = 'i';
if (type)
snprintf(buf, sizeof(buf), "L%d%c", ca->level, type);
else
snprintf(buf, sizeof(buf), "L%d", ca->level);
ca->name = xstrdup(buf);
ul_path_readf_u32(sys, &ca->ways_of_associativity,
"cpu%d/cache/index%zu/ways_of_associativity", num, i);
ul_path_readf_u32(sys, &ca->physical_line_partition,
"cpu%d/cache/index%zu/physical_line_partition", num, i);
ul_path_readf_u32(sys, &ca->number_of_sets,
"cpu%d/cache/index%zu/number_of_sets", num, i);
ul_path_readf_u32(sys, &ca->coherency_line_size,
"cpu%d/cache/index%zu/coherency_line_size", num, i);
ul_path_readf_string(sys, &ca->allocation_policy,
"cpu%d/cache/index%zu/allocation_policy", num, i);
ul_path_readf_string(sys, &ca->write_policy,
"cpu%d/cache/index%zu/write_policy", num, i);
/* cache size */
if (ul_path_readf_buffer(sys, buf, sizeof(buf),
"cpu%d/cache/index%zu/size", num, i) > 0)
parse_size(buf, &ca->size, NULL);
else
ca->size = 0;
}
if (!ca->sharedmap)
/* information about how CPUs share different caches */
ul_path_readf_cpuset(sys, &ca->sharedmap, cxt->maxcpus,
"cpu%d/cache/index%zu/shared_cpu_map", num, i);
}
return 0;
}
static int read_ids(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
if (ul_path_accessf(sys, F_OK, "cpu%d/topology", num) != 0)
return 0;
DBG(CPU, ul_debugobj(cpu, "#%d reading IDs", num));
if (ul_path_readf_s32(sys, &cpu->coreid, "cpu%d/topology/core_id", num) != 0)
cpu->coreid = -1;
if (ul_path_readf_s32(sys, &cpu->socketid, "cpu%d/topology/physical_package_id", num) != 0)
cpu->socketid = -1;
if (ul_path_readf_s32(sys, &cpu->bookid, "cpu%d/topology/book_id", num) != 0)
cpu->bookid = -1;
if (ul_path_readf_s32(sys, &cpu->drawerid, "cpu%d/topology/drawer_id", num) != 0)
cpu->drawerid = -1;
return 0;
}
static int read_polarization(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
char mode[64];
if (ul_path_accessf(sys, F_OK, "cpu%d/polarization", num) != 0)
return 0;
ul_path_readf_buffer(sys, mode, sizeof(mode), "cpu%d/polarization", num);
DBG(CPU, ul_debugobj(cpu, "#%d reading polar=%s", num, mode));
if (strncmp(mode, "vertical:low", sizeof(mode)) == 0)
cpu->polarization = POLAR_VLOW;
else if (strncmp(mode, "vertical:medium", sizeof(mode)) == 0)
cpu->polarization = POLAR_VMEDIUM;
else if (strncmp(mode, "vertical:high", sizeof(mode)) == 0)
cpu->polarization = POLAR_VHIGH;
else if (strncmp(mode, "horizontal", sizeof(mode)) == 0)
cpu->polarization = POLAR_HORIZONTAL;
else
cpu->polarization = POLAR_UNKNOWN;
if (cpu->type)
cpu->type->has_polarization = 1;
return 0;
}
static int read_address(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
if (ul_path_accessf(sys, F_OK, "cpu%d/address", num) != 0)
return 0;
DBG(CPU, ul_debugobj(cpu, "#%d reading address", num));
ul_path_readf_s32(sys, &cpu->address, "cpu%d/address", num);
if (cpu->type)
cpu->type->has_addresses = 1;
return 0;
}
static int read_configure(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
if (ul_path_accessf(sys, F_OK, "cpu%d/configure", num) != 0)
return 0;
DBG(CPU, ul_debugobj(cpu, "#%d reading configure", num));
ul_path_readf_s32(sys, &cpu->configured, "cpu%d/configure", num);
if (cpu->type)
cpu->type->has_configured = 1;
return 0;
}
static int read_mhz(struct lscpu_cxt *cxt, struct lscpu_cpu *cpu)
{
struct path_cxt *sys = cxt->syscpu;
int num = cpu->logical_id;
int mhz;
DBG(CPU, ul_debugobj(cpu, "#%d reading mhz", num));
if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/cpuinfo_max_freq", num) == 0)
cpu->mhz_max_freq = (float) mhz / 1000;
if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/cpuinfo_min_freq", num) == 0)
cpu->mhz_min_freq = (float) mhz / 1000;
/* The default current-frequency value comes is from /proc/cpuinfo (if
* available). This /proc value is usually based on MSR registers
* (APERF/APERF) and it changes pretty often. It seems better to read
* frequency from cpufreq subsystem that provides the current frequency
* for the current policy. There is also cpuinfo_cur_freq in sysfs, but
* it's not always available.
*/
if (ul_path_readf_s32(sys, &mhz, "cpu%d/cpufreq/scaling_cur_freq", num) == 0)
cpu->mhz_cur_freq = (float) mhz / 1000;
if (cpu->type && (cpu->mhz_min_freq || cpu->mhz_max_freq))
cpu->type->has_freq = 1;
return 0;
}
float lsblk_cputype_get_maxmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct)
{
size_t i;
float res = 0.0;
for (i = 0; i < cxt->npossibles; i++) {
struct lscpu_cpu *cpu = cxt->cpus[i];
if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu))
continue;
res = max(res, cpu->mhz_max_freq);
}
return res;
}
float lsblk_cputype_get_minmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct)
{
size_t i;
float res = -1.0;
for (i = 0; i < cxt->npossibles; i++) {
struct lscpu_cpu *cpu = cxt->cpus[i];
if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu))
continue;
if (res < 0.0 || cpu->mhz_min_freq < res)
res = cpu->mhz_min_freq;
}
return res;
}
/* returns scaling (use) of CPUs freq. in percent */
float lsblk_cputype_get_scalmhz(struct lscpu_cxt *cxt, struct lscpu_cputype *ct)
{
size_t i;
float fmax = 0, fcur = 0;
for (i = 0; i < cxt->npossibles; i++) {
struct lscpu_cpu *cpu = cxt->cpus[i];
if (!cpu || cpu->type != ct || !is_cpu_present(cxt, cpu))
continue;
if (cpu->mhz_max_freq <= 0.0 || cpu->mhz_cur_freq <= 0.0)
continue;
fmax += cpu->mhz_max_freq;
fcur += cpu->mhz_cur_freq;
}
if (fcur <= 0.0)
return 0.0;
return fcur / fmax * 100;
}
int lscpu_read_topology(struct lscpu_cxt *cxt)
{
size_t i;
int rc = 0;
for (i = 0; i < cxt->ncputypes; i++)
rc += cputype_read_topology(cxt, cxt->cputypes[i]);
for (i = 0; rc == 0 && i < cxt->npossibles; i++) {
struct lscpu_cpu *cpu = cxt->cpus[i];
if (!cpu || !cpu->type)
continue;
DBG(CPU, ul_debugobj(cpu, "#%d reading topology", cpu->logical_id));
rc = read_ids(cxt, cpu);
if (!rc)
rc = read_polarization(cxt, cpu);
if (!rc)
rc = read_address(cxt, cpu);
if (!rc)
rc = read_configure(cxt, cpu);
if (!rc)
rc = read_mhz(cxt, cpu);
if (!rc)
rc = read_caches(cxt, cpu);
}
lscpu_sort_caches(cxt->caches, cxt->ncaches);
DBG(GATHER, ul_debugobj(cxt, " L1d: %zu", lscpu_get_cache_full_size(cxt, "L1d", NULL)));
DBG(GATHER, ul_debugobj(cxt, " L1i: %zu", lscpu_get_cache_full_size(cxt, "L1i", NULL)));
DBG(GATHER, ul_debugobj(cxt, " L2: %zu", lscpu_get_cache_full_size(cxt, "L2", NULL)));
DBG(GATHER, ul_debugobj(cxt, " L3: %zu", lscpu_get_cache_full_size(cxt, "L3", NULL)));
return rc;
}